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Abstract
Mild traumatic brain injury (mTBI) and occupational blast exposure in military Service Members may lead to impaired brain 
waste clearance which increases neurological disease risk. Perivascular spaces (PVS) are a key part of the glymphatic system 
which supports brain waste clearance, preferentially during sleep. Visible PVS on clinical magnetic resonance imaging have 
been previously observed in patients with neurodegenerative diseases and animal neurotrauma models. The purpose of this 
study was to determine associations between PVS morphological characteristics, military career stage, and mTBI history in 
Special Operations Forces (SOF) Soldiers. Participants underwent T2-weighed neuroimaging to capture three-dimensional 
whole brain volumes. Segmentation was performed using a previously validated, multi-scale deep convolutional encoder-
decoder neural network. Only PVS clusters within the white matter mask were quantified for analyses. Due to non-normal 
PVS metric distribution, non-parametric Mann–Whitney U tests were used to determine group differences in PVS outcomes. 
In total, 223 healthy SOF combat Soldiers (age = 33.1 ± 4.3yrs) were included, 217 reported career stage. Soldiers with mTBI 
history had greater PVS number (z = 2.51, P = 0.013) and PVS volume (z = 2.42, P = 0.016). In-career SOF combat Soldiers 
had greater PVS number (z = 2.56, P = 0.01) and PVS volume (z = 2.28, P = 0.02) compared to a baseline cohort. Mild TBI 
history is associated with increased PVS burden in SOF combat Soldiers that are clinically recovered from mTBI. This may 
indicate ongoing physiological changes that could lead to impaired waste clearance via the glymphatic system. Future studies 
should determine if PVS number and volume are meaningful neurobiological outcomes for neurodegenerative disease risk 
and if clinical interventions such as improving sleep can reduce PVS burden.
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Introduction

Traumatic brain injury (TBI) has emerged as the signature 
injury sustained in modern military theaters and train-
ing environments [1]. The Traumatic Brain Injury Center 
of Excellence reported 449,026 TBI sustained by Service 
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members between 2001 and 2021, 82.3% of which were 
characterized as “mild” (mTBI) [2]. Special Operations 
Forces (SOF) face a greater risk for neurotrauma given their 
training demands and growing role in global conflict inter-
vention. Estimates suggest 25–55% of SOF Service members 
endorse mTBI history [3–5]. These mTBI are identified by 
confused or disoriented states lasting more than 24 h; or 
loss of consciousness, if any, for more than 30 min, but less 
than 24 h; or memory loss lasting greater than 24 h but less 
than 7 days, without gross anatomical findings on standard 
clinical imaging. The designation “mild” is a misnomer, 
as mTBI are associated with persistent neurocognitive and 
behavioral deficits in patients [6–8]. Evidence supports a 
link between military mTBI history and an increased risk for 
atypical neurodegeneration [9]. It is imperative to determine 
what physiological changes following mTBI increase neu-
rodegenerative risk so that early chronic disease detection 
and interventions can be developed for Service members 
with mTBI history.

In addition to mTBI, SOF members sustain recurrent 
occupational blast exposure due to a need to maintain opera-
tional readiness [10]. Although these individual exposures 
may not evoke mTBI symptoms, cumulative blast neuro-
trauma may contribute to developing long-term neurologi-
cal symptoms via damage to neural tissue [11]. Progressive 
damage to neurons and glia which contribute to neurode-
generative changes may be caused by an inability to elimi-
nate harmful neuroinflammatory waste caused by frequent 
blast exposure [12]. Recent estimates in this population 
indicates SOF service members are cumulatively exposed 
to blast overpressure during their training [10]. This cumu-
lative exposure value could be further explored with more 
sophisticated algorithms related to blast frequency, severity, 
recency, and other ordnance systems. Notwithstanding, it 
highlights the essential need to detect and describe physi-
ological changes attributed to chronic occupational blast 
exposure, with or without mTBI, which may lead to chronic 
neuropathology.

The glymphatic system is a central nervous system waste 
clearance pathway first described in the past 10 years [13, 
14]. The glymphatic system—named for the glial cells facili-
tating it—shares similar functional properties to the periph-
eral lymphatic system. The glymphatic system uses perivas-
cular channels to eliminate harmful cellular waste from the 
brain, and is believed to be most active during sleep [15, 16]. 
The glymphatic system is critically involved in clearing beta-
amyloid and tau, which are both neurotoxic proteins that 
promote neurodegeneration [17–19]. Perivascular spaces 
(PVS) are fluid-filled spaces integral to the glymphatic sys-
tem which surround perforating arterioles and venules in 
the brain. Normally microscopic, increased and enlarged 
PVS have been qualitatively observed on T2-weighted 
magnetic resonance imaging (MRI) as tubular white matter 

hyperintensities in patients with vascular dementias, Alzhei-
mer’s disease, and stroke [20, 21]. These dilated PVS have 
been noted as a radiologic “hallmark” of TBI, even prior to 
the glymphatic system’s discovery [22]. Chronic glymphatic 
system disruption secondary to neurotrauma is suspected to 
have a role in linking cellular injury to adverse long-term 
clinical outcomes [23].

Both sleep and mTBI impact the glymphatic system. 
Reports indicate more than 48% of post-deployed Service 
members have poor sleep [24]. Increased mTBI incidence 
has also been associated with sleep disturbances in Service 
members and Veterans [25]. Enlarged PVS have been cor-
related with worse objective sleep metrics using polysom-
nography [26]. In combination, individuals with TBI show a 
stronger relationship between sleep and enlarged PVS com-
pared to a non-TBI group [12]. In Veterans, mTBI was posi-
tively related to PVS volume and an interaction effect was 
found between mTBI and poor sleep on PVS volume [27].

Efforts have been made to quantify PVS burden using 
manual and automatic segmentation techniques. Most meth-
ods are time-intensive or computationally rigorous, limiting 
sample size or generalizability in previous studies. Advances 
in neural networks allow more accurate and efficient auto-
mated segmentation in larger samples. The overall study 
purpose was to quantify dilated PVS using a novel fully 
convolutional neural network and determine the association 
between PVS burden (number and volume) and mTBI his-
tory in SOF combat Soldiers. Our specific aims were two-
fold: (1) To describe the differences in PVS burden (number 
and volume) between SOF members with and without mTBI 
history and (2) describe the differences in PVS burden (num-
ber and volume) between Soldiers at the start of their SOF 
career (baseline) and during their SOF career (in-career). 
Soldiers at the baseline timepoint were individuals who 
exited a SOF training pipeline at a variety of age ranges and 
experience levels within the military. The in-career time-
point included Soldiers that matriculated and were retained 
by this SOF organization and sustained regular low level 
blast exposure due to training requirements. However, blast 
dosimetry was not individually tracked in this cohort. Our 
overall goal was to describe ongoing physiological changes 
that may link injury and exposure to adverse future health 
outcomes.

Methods

In this cross-sectional study, presently asymptomatic 
SOF combat Soldiers underwent multimodal neuroimag-
ing including whole brain three-dimensional T2-weighted 
MRI sequences obtained on a Siemens 3T Biograph mMR 
or 3T MAGNETOM Prisma (TR/TE = 3200/400 ms, slice 
thickness = 1 mm, FoV = 256 × 256 mm). All participants 
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completed verbal consent and study procedures were 
approved by the office of human research ethics at our 
institution. The PVS segmentation was performed using 
a previously validated, multi-scale deep convolutional 
encoder-decoder neural network [28]. Skull stripping was 
performed on the T2-weighted images using FSL’s Brain 
Extraction Tool. White matter and subcortical gray matter 
were extracted from T2-weighted images using FMRIB’s 
Automated Segmentation Tool (FAST) without partial vol-
ume estimation. A custom atlas with segmented cerebral 
white matter derived from FAST and subcortical gray matter 
labels from the T2-weighted JHU-MNI-ss Eve atlas were 
registered to each subject using Advanced Normalization 
Tools [28] (ANTs) to minimize misidentifying thin tubular 
structures in the skull, brainstem, cerebellum, and cortex 
as PVS. Only PVS clusters within the custom white matter 
mask (Figs. 1 and 2) were retained for analyses. 

The morphological features of PVS burden were quanti-
fied as total PVS number and PVS volume in cubic mil-
limeters. Self-reported mTBI history was dichotomized as 
“with history” and “without history.” Mild TBI was opera-
tionally defined in this study as a change in brain function 
following a force to the head, which may be accompanied by 
temporary loss of consciousness, but is identified in awake 
individuals with measures of neurologic and cognitive dys-
function. Due to the non-normal PVS variable distribution, 
nonparametric Mann–Whitney U tests were used to deter-
mined group differences in PVS outcomes. Means (and SDs) 

and medians (and IQRs) were used to characterize continu-
ous variables by group. All statistical tests were two-tailed 
with an a priori α level P ≤ 0.05.

Results

In total, 223 healthy SOF combat Soldiers (mean age = 33.1, 
SD ± 4.3yrs) were included. Within this study sample, 123 
(55.16%) self-reported mTBI history and 100 (44.84%) 
reported no mTBI history. Career stage data was available 
for 217 participants, 141 (64.9%) of which were collected 
at baseline. Total PVS number was significantly greater 
(z = 2.51, P = 0.013) for Soldiers who self-reported mTBI 
history (median = 40, IQR = 49) than for those without 
mTBI history (median = 33, IQR = 35). White matter PVS 
volume was also significantly greater (z = 2.42, P = 0.016) 
for Soldiers reporting mTBI history (median = 717 mm3, 
IQR = 1115  mm3) than those without mTBI history 
(median = 598 mm3, IQR = 756 mm3). Both PVS number 
and volume by mTBI history group are illustrated in Fig. 3.

In-career SOF combat Soldiers had significantly greater 
(z = 2.56, P = 0.011) total PVS number (median = 45.5, 
IQR = 49) than Soldiers at baseline (median = 34, IQR = 33) 
and significantly greater (z = 2.28, P = 0.023) PVS vol-
ume than Soldiers at baseline (median = 763.5  mm3, 
IQR = 1283 mm3 vs median = 611 mm3, IQR = 799 mm3). 

Fig. 1   Rendered 3D white mat-
ter volumes from participants 
in this sample representing the 
median PVS volume for those 
without mTBI history on the 
left and those with mTBI his-
tory on the right. PVS voxels 
retained for analysis within the 
white matter mask are colored 
red

Fig. 2   Rendered 3D white mat-
ter volumes from participants 
in this sample representing 
the median PVS volume for 
those at Special Operations 
Forces career baseline on the 
left and those from the in-career 
group on the right. PVS voxels 
retained for analysis within the 
white matter mask are colored 
red



2815Mild Traumatic Brain Injury and Career Stage Associate with Visible Perivascular Spaces in…

Differences between PVS number and volume by career 
stage are illustrated in Fig. 4.

Discussion

Mild TBI history is associated with greater PVS burden 
(number and volume) in SOF combat Soldiers. This finding 
is further magnified since the participants included in our 
study were clinically recovered from mTBI and had fully 

returned to duty. Soldiers with greater occupational blast 
exposure, using career stage as a proxy, have greater PVS 
burden. This may indicate ongoing neuroinflammatory pro-
cesses leading to impaired waste clearance via the glym-
phatic system and subsequently increased neurodegenerative 
disease risk.

Functional PVS are crucial for metabolic waste removal 
in animal studies [29]. Rodents subjected to blast and blunt 
mTBI show glymphatic dysfunction and aquaporin-4 chan-
nel loss [17]. Aquaporin-4 channels interface between 

Fig. 3   Half-violin boxplots for group differences between PVS number and volume by dichotomous mTBI classification. P values represent 
Mann–Whitney U test significance level

Fig. 4   Half-violin boxplots for group differences between PVS number and volume by career stage. P values represent Mann–Whitney U test 
significance level
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astrocyte end-feet and PVS in healthy conditions, facilitating 
fluid exchange between the PVS and interstitial fluid [13]. 
Neurotrauma and neurological disorders may disrupt aqua-
porin-4 channel function leading to PVS dilation, impaired 
glymphatic flow and waste accumulation [30]. Due to the 
glymphatic system’s role in clearing neurodegenerative 
mediators including beta-amyloid and tau, this waste accu-
mulation at the PVS may spur traumatically induced neu-
rodegenerative processes caused by neurofibrillary tangle 
formation and insoluble amyloid plaques [13, 17, 23].

Neuroinflammatory processes secondary to mTBI, and 
cell damage caused by subconcussive blast, may also cause 
PVS dilation. Secondary metabolic cell death occurs due 
to increased cellular energy demands amid lower cerebral 
blood flow in the sub-acute phase following mTBI [31]. 
Previous research in SOF combat Soldiers indicates ongo-
ing inflammatory cell death may cause cell body factor 
neuron-specific enolase to remain elevated despite clinical 
recovery from mTBI [3]. We speculate these factors may 
lead to a scenario whereby the rate of glymphatic clearance 
is insufficient to reduce PVS burden, thereby resulting in a 
chronic accumulation of cell debris in the brain. However, 
the mechanical link between both aquaporin-4 disruption, 
post-traumatic neuroinflammation, and PVS enlargement is 
yet to be confirmed.

Limitations to this study include a reliance on self-
reported mTBI history. Although this method is commonly 
employed in the mTBI literature, it could lead to underre-
porting due to ambiguous diagnostic criteria or nondisclo-
sure. Self-reporting is commonly employed in the mTBI 
literature but may introduce inaccuracies or underreport-
ing. Evidence indicates mTBI nondisclosure is prevalent in 
both military and civilian populations; however, we cannot 
reliably estimate how this might impact our sample. Sev-
eral factors contribute to nondisclosure in both populations. 
These include fear of missing game/practice time [32], ser-
vice career repercussions [33], or simply not knowing it was 
a concussion [32]. Nondisclosure would ultimately lead to 
inaccurate medical records. This limitation is not restricted 
to our study but, rather, to all those in our field.

Additionally, the automated novel fully convolutional 
neural network employed to segment PVS may be subject 
to mislabeling. Visual inspection and stringent white matter 
masking was used to mitigate any potentially false labels. 
Sleep is known to impact PVS morphology and mTBI status 
may affect sleep directly or via posttraumatic stress symp-
toms. We were unable to control for these relationships in 
the present study. Future studies should determine how sleep 
influences PVS burden following mTBI exposure. We also 
were unable to control for physiological covariates (e.g. 
blood pressure, intracranial pressure, weight). Relationships 
between PVS outcomes and neuroinflammatory biomark-
ers should be explored to validate a mechanistic process 

between cell death and glymphatic dysfunction. Longitu-
dinal research is needed to determine if PVS number and 
volume are meaningful neuroimaging markers for neurode-
generative disease risk and prognosis.

Conclusion

Our sample included SOF combat Soldiers with no ongoing 
observable symptoms related to any previous mTBI they 
may have sustained. Thus, the Soldiers we studied presented 
for testing in a clinically ‘normal’ uninjured state. Noting 
our observations in otherwise healthy individuals may point 
to some longer lasting underlying physiological deficits that 
may persist and for which standard clinical assessments are 
incapable of measuring or tracking. Therefore, our finding 
that greater PVS burden (number and volume) was associ-
ated with mTBI history and career stage may indicate persis-
tent post-mTBI neurophysiological changes that may affect 
long-term brain health.
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